Reduction during π-(cyclopentadienyliron) complexation of 1,8-dichloroanthracene

María del Rosario Benites, Frank R. Fronczek, Andrew W. Maverick *
Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA

Received 27 July 1995; in revised form 17 November 1995

Abstract

Reaction of 1,8 -dichloroanthracene with ferrocene and $\mathrm{AlCl}_{3}-\mathrm{Al}$ at 81 or $101{ }^{\circ} \mathrm{C}$ affords [η^{6}-(1,8-dichloro-9,10dihydroanthracene) FeCp$)\left(\mathrm{PF}_{6}\right)(\mathbf{I})$ and $\left[\eta^{6}: \eta^{6}-\left(1,8\right.\right.$-dichloro-9,10-dihydroanthracene) $\left.(\mathrm{FeCp})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ (II). NMR spectral analysis of \mathbf{I} and II, isolation of 1,8 -dichloro- 9,10 -dihydroanthracene by pyrolytic sublimation, and X-ray analysis of two crystal forms of \mathbf{I} show that the central ring of 1,8 -dichloroanthracene is reduced. This agrees with the behavior previously reported for anthracene. NMR supports a trans configuration for dication II.

Ke vwords: Iron; Arene; Anthracene; Cyclopentadienyls; Activation; Hydroaromatics; Group 8

1. Introduction

Following our studies of cofacial binuclear transition metal complexes, such as $\mathrm{Cu}_{2}(\mathrm{XBA})_{2}-\mathrm{XBAH}_{2}=m-$ xylylenebis(acetylacetone) (3,3'-[1,3-phenylenebis (methylene)-bis(2,4-pentanedione))-(see below) [1-3], we became interested in the synthesis of a more rigid ligand based on 1,8 -anthracenediylbis(acetylacetone) (3.3'-anthracenediylbis(2,4-pentanedione)) (ABAH_{2}). This new ligand, with its β-diketone moieties constrained to be cofacial, should enable us to obtain a wide variety of cofacial bimetallic complexes such as 1 , with controllable environments around the metal centers, for synthesis of multi-metal redox active catalysts.

We have been exploring the preparation of ABAH_{2} from 1,8 -dichloroanthracene (ACl_{2}). Although aryl halides are not ordinarily susceptible to attack by nucleophiles such as 2,4 -pentanedionate (acac^{-}), they can be activated by π complexation of the arene to a metallic moiety. Sutherland and coworkers [4,5] have reported the use of π complexation to CpFe^{+}(see Scheme 1 to convert chlorobenzene into 3 -phenyl-2,4-pentanedione.

[^0]Scheme 2 contains our proposed strategy for extending this synthesis to ABAH_{2} from ACl_{2}.

Following this approach, we now report the preparation (see Eq. (1) of the mono- and bis(cyclopentadienyliron) complexes of 1,8 -dichloro- 9,10 -dihydroanthracene ($\left[\left(\mathrm{AH}_{2} \mathrm{Cl}_{2}\right) \mathrm{FeCp}\right]\left(\mathrm{PF}_{6}\right)$ (I) and $\left[\left(\mathrm{AH}_{2} \mathrm{Cl}_{2}\right)\right.$ $(\mathrm{FeCp})_{2}\left(\mathrm{PF}_{6}\right)_{2}$ (II)), obtained from the ligand-substitution reaction of ferrocene with ACl_{2}. In this reaction, π complexation of ACl_{2} is accompanied by reduction of its central ring in forming the two Fe complexes.

2. Results and discussion

2.1. Synthesis and NMR characterization

One of the most extensively studied families of metal π-arene complexes for the formation of $\mathrm{C}-\mathrm{C}$ bonds is (η^{6}-haloarene) $\mathrm{Cr}(\mathrm{CO})_{3}$ [6]. In the early stages of this investigation, we pursued the π complexation of ACl_{2} to this $\mathrm{Cr}(\mathrm{CO})_{3}$ moiety, by reaction of $\mathrm{Cr}(\mathrm{CO})_{6}$ with ACl_{2} in n-butyl ether and THF. However, the reaction mixture changed color from yellow to green after a few hours, and no product could be isolated. We later found that although (η^{6}-anthracene) $\mathrm{Cr}(\mathrm{CO})_{3}$ has been reported

$\mathrm{Cu}_{2}(\mathrm{XBA})_{2}$

ABAH_{2}

1
[7], it is very unstable. Also, no bis-coordinated ($\eta^{6}: \eta^{6}$-anthracene) $\left[\mathrm{Cr}(\mathrm{CO})_{3}\right]_{2}$ appears to have been prepared.

We then turned our attention to the $\left(\eta^{6}\right.$ haloarene) $[\mathrm{FeCp}]^{+}$system, owing to its ease of formation and the greater susceptibility of its coordinated arene to nucleophilic attack. Following the method of Nesmeyanov et al. [8], we prepared the cationic complexes $\left(\mathrm{AH}_{2} \mathrm{Cl}_{2}\right)[\mathrm{FeCp}]^{+}$and $\left(\mathrm{AH}_{2} \mathrm{Cl}_{2}\right)\left[\mathrm{FeCpl}_{2}{ }^{2+}\right.$ by AlCl_{3}-induced cleavage of ferrocene in the presence of
ACl_{2} and Al in refluxing cyclohexane or methylcyclohexane. Further treatment with $\mathrm{NH}_{4} \mathrm{PF}_{6}$ led to the precipitation of the hexafluorophosphate salts I and II. No dehalogenation of the arene occurred under our reaction conditions ($T=81$ or $101{ }^{\circ} \mathrm{C}$). However, when we increased the reaction temperature to $135-155^{\circ} \mathrm{C}$, using decalin as the solvent, no product could be obtained; this may be due to decomposition of ACl_{2} under the more vigorous conditions.

Our initial experiments, using a $1: 1$ molar ratio of

Scheme 1.

Scheme 2.

Table 1
${ }^{1} \mathrm{H}$ NMR data ${ }^{a}$

Compound	Uncomplexed arene	Complexed arene	Cp	CH_{2} or CH
I	7.53 (m,3H)	6.92 ($\mathrm{t}, 1 \mathrm{H}, 3.8)$	4.91 (s,5H)	4.86 (d, 1H,19.6)
		6.65 (d,2H,3.9)		4.43 (d,1H,18.5)
				4.31 (dd, 1H, 18.4,2.6)
				4.07 (dd,1H,19.6,2.5)
II		7.03 (t,2H,3.6)	5.25 (s,10H)	4.97 (s,2H)
		6.74 (d,4H,3.6)		4.94 (s,2H)
$\mathrm{AH}_{2} \mathrm{Cl}_{2}$	7.29 (m,6H)			4.12 (m,4H)
ACl_{2}	8.15 (br d, 2H,8.5 ${ }^{\text {b }}$)			9.17 (s,1H)
	7.77 (dd, 2H, 0.9,7.3)			8.72 (s,1H)
	7.56 (dd, 2H,8.5,7.3)			
$\left(\mathrm{AH}_{2}\right)[\mathrm{FeCp}]^{+c}$	7.51 (m,4H)	$6.51(\mathrm{~m}, 4 \mathrm{H})$	$4.67(\mathrm{~s}, 5 \mathrm{H})$	$4.12(\mathrm{~s}, 4 \mathrm{H})$
$\left(\mathrm{AH}_{2}\right)[\mathrm{FeCP}]_{2}{ }^{2+} \mathrm{c}$		6.60 (m,8H)	5.02 ($\mathrm{s}, 10 \mathrm{H})$	4.55 (s,4H)

ACl_{2} and FeCp_{2}, led to compound I in 6% yield. Better yields were obtained by using a large excess of FeCp_{2}, AlCl_{3} and Al, leading to I and II in 13% and 26% yields respectively. Separation of these compounds was possible on the basis of their solubilities. Both of them are soluble in polar solvents, such as acetone, $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{CH}_{3} \mathrm{OH}$, but only I is soluble in CHCl_{3}. Thus, treating the crude product with CHCl_{3}, followed by acetone, afforded pure mono- (I) and diiron (II) salts respectively. Both salts decompose in aerated solution after 1-2 days, but the solids are stable in air for several months.

Demetalation of both the mono- and diiron salts by pyrolytic sublimation yielded $\mathrm{AH}_{2} \mathrm{Cl}_{2}$ with small traces of ACl_{2}, as identified by ${ }^{1} \mathrm{H}$ NMR; solid $\mathrm{AH}_{2} \mathrm{Cl}_{2}$ and its solutions slowly oxidize in air to form ACl_{2}.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data for I and II and several reference compounds are presented in Tables 1 and 2. In general appearance, the spectra of I and II are similar to those of the analogous mono- and diiron complexes of 9,10 -dihydroanthracene $\left(\mathrm{AH}_{2}\right)$ [9]. For both complexes I and II the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances of the complexed ring(s) of $\mathrm{AH}_{2} \mathrm{Cl}_{2}$ are shifted upfield compared with those of the parent $\mathrm{AH}_{2} \mathrm{Cl}_{2}$. There is also a downfield shift of the non-coordinated ring atoms and methylene protons of $\mathrm{AH}_{2} \mathrm{Cl}_{2}$ in complex I compared with the free arene. Bis-coordination in complex II increases the downfield shift of the methylene and Cp ring protons and carbons. Reduction of ACl_{2} during π complexation is evidenced by signals in both ${ }^{1} \mathrm{H}$ NMR ($\delta 4-5 \mathrm{ppm}$) and ${ }^{13} \mathrm{C}$ NMR ($30-35 \mathrm{ppm}$), indicative of the methylene groups in the π-coordinated $\mathrm{AH}_{2} \mathrm{Cl}_{2}$.

Table 2
${ }^{13} \mathrm{C}$ NMR data ${ }^{\text {a }}$

Compound	Uncomplexed arene	Complexed arene	Cp	CH_{2} or CH
I	$\begin{aligned} & 136.9,133.8,131.6, \\ & 129.8(\mathrm{CH}), 129.0(\mathrm{CH}), \\ & 127.7(\mathrm{CH}) \end{aligned}$	$\begin{aligned} & 107.3,101.0,98.0, \\ & 88.3(\mathrm{CH}), 87.4(\mathrm{CH}), \\ & 87.1(\mathrm{CH}) \end{aligned}$	79.7	34.9, 29.9
II		$\begin{aligned} & 119.9,107.4,99.5 \\ & 89.0(\mathrm{CH}), 88.2(\mathrm{CH}) \\ & 87.4(\mathrm{CH}) \end{aligned}$	81.2	33.2, 30.9
$\mathrm{AH}_{2} \mathrm{Cl}_{2}{ }^{\text {b }}$	$\begin{aligned} & 127.2(\mathrm{CH}), 127.1(\mathrm{CH}), \\ & 125.9(\mathrm{CH}), 125.0 \end{aligned}$			36.1, 30.0
ACl_{2}	$\begin{aligned} & \text { 133.8, 132.5, 130.3, } \\ & \text { 129.3(CH), 128.8(CH), } \\ & 127.5(\mathrm{CH}), 127.0(\mathrm{CH}), \\ & 120.8(\mathrm{CH}) \end{aligned}$			
$\left(\mathrm{AH}_{2}\right)[\mathrm{FeCp}]^{+} \mathrm{c}$	$\begin{aligned} & 134.1,127.2(\mathrm{CH}), \\ & 126.7(\mathrm{CH}) \end{aligned}$	$\begin{aligned} & 102.7,86.3(\mathrm{CH}), \\ & 85.7(\mathrm{CH}) \end{aligned}$	75.8	33.5
$\left(\mathrm{AH}_{2}\right)[\mathrm{FeCp}]_{2}{ }^{2+\mathrm{c}}$		$\begin{aligned} & 99.0,86.5(\mathrm{CH}), \\ & 86.3(\mathrm{CH}) \end{aligned}$	77.1	31.9

[^1]This was confirmed in both iron compounds by using the DEPT experiment.

The ${ }^{1} \mathrm{H}$ NMR spectrum of compound II supports a trans configuration. The methylene protons appear as two singlets, which indicates that the protons in each methylene bridge are equivalent. This equivalence is likely to be due to rapid boat-to-boat interconversion of the $\mathrm{AH}_{2} \mathrm{Cl}_{2}$ ligand on the NMR time scale, generating two magnetically equivalent methylene protons. If the two CpFe groups were cis, then each of the two CH_{2} groups would contain one exo and one endo proton; thus, two AB quartets should result.

In addition to the spectral data, reduction of the arene ligand was established by the X-ray analysis of I (see Section 2.2). The reduction of ACl_{2} during π complexation to CpFe^{+}is in accordance with the behavior shown by other previously reported CpFe^{+}derivatives of condensed polycyclic arenes (e.g. naphthalene, anthracene, phenanthrene, and pyrene) [9-12]. For example, the mono- and diiron complexes of AH_{2} have been prepared by a ligand-substitution reaction with ferrocene [9]. Other iron starting materials have also been used: reaction of $\mathrm{Cp}{ }^{*} \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Br}\left(\mathrm{Cp}^{*}=\eta^{5} \mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right)$ with anthracene in the presence of $\mathrm{AlCl}_{3}[13]$ afforded a

6:4 mixture of ($\eta^{6}-1,2$ 3,4-tetrahydroanthracene) $\left[\mathrm{FeCp}^{*}\right]^{+}$and ($\eta^{6}-9,10$-dihydroanthracene) $\left[\mathrm{FeCp}{ }^{*}\right]^{+}$. In this case, the more sterically hindered $\mathrm{Cp}{ }^{*}$ ligand may partially inhibit the reduction of the 9 and 10 positions of anthracene, favoring reaction instead at the more remote $1-4$ positions. Two radical mechanisms, involving Fe (III) or Fe (I) 17-electron intermediates, have been proposed [12-14], in which the formation of a $\mathrm{Fe}-\mathrm{H}$ species leads to a stereospecific transfer (cis and endo) of the hydrogen atom to the arene. In all cases, the H atoms required for reduction of anthracene to AH_{2} are believed to come from the solvent.

Reduction of both anthracene and ACl_{2} occurs at low reaction temperatures, about $80{ }^{\circ} \mathrm{C}$. These mild conditions prevent dehalogenation of ACl_{2}, making complexes I and II the first examples of haloanthracene derivatives coordinated to CpFe^{+}moieties.

2.2. Crystal structures of mono- and diiron complexes

Complex I was crystallized in two forms, with space groups $P b c a$ (Ia) and $P \overline{1}$ (Ib), by layering solutions of I in CHCl_{3} with ether and hexane respectively. The Ia form contains a poorly-defined CHCl_{3} molecule. This

Table 3
Crystal data and summary of intensity data collection and structure refinement

Compound	$\left[\left(\mathrm{AH}_{2} \mathrm{Cl}_{2}\right)(\mathrm{CpFe})\right] \mathrm{PF}_{6} \cdot \mathrm{CHCl}_{3}$ (Ia)	[($\left.\left.\mathrm{AH}_{2} \mathrm{Cl}_{2}\right)(\mathrm{CpFe})\right] \mathrm{PF}_{6}$ (Ib)		
Fomula	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{5} \mathrm{~F}_{6} \mathrm{FeP}$	$\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{FeP}$		
Color/shape	orange needle	orange-yellow parallelepiped		
Formula weight	634.4	515.1		
Space group	orthorhombic, Pbca	triclinic, $P \overline{1}$		
Temp. (${ }^{\circ} \mathrm{C}$)	22	26		
Cell constants				
$a(\AA)$	10.2463(6)	8.2301(4)		
$b(\AA)$	15.9047(8)	9.8770(6)		
$C(\AA)$	29.882(2)	13.4623(7)		
α (deg)	90	72.895(5)		
β (deg)	90	72.218(4)		
γ (deg)	90	$77.384(5)$		
$V\left(\AA^{3}\right)$	4869.7(9)	985.97(4)		
Z	8	2		
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.731	1.735		
$\mu\left(\mathrm{cm}^{-1}\right)$	12.9	11.7		
Crystal dimensions (mm^{3})	$0.12 \times 0.22 \times 0.40$	$0.10 \times 0.20 \times 0.33$		
Transmission coefficient	0.982-0.999	0.877-1.000		
Decay of standards	<2\%	< 2%		
2θ range (deg)	$2<2 \theta<50$	$2<2 \theta<50$		
Range of h, k, l	12, 18, 35	$9, \pm 11, \pm 15$		
Unique reflections	4272	3472		
Observed reflections ${ }^{\text {a }}$	2306	2660		
No. of parameters varied	298	263		
GOF ${ }^{\text {b }}$	3.454	2.297		
$R^{\text {c }}$	0.074	0.043		
$R_{W}{ }^{\text {d }}$	0.085	0.051		
Max. shift/esd	< 0.01	0.01		
Largest feature final diff. map ($\mathrm{e}^{-} \AA^{-3}$)	0.90	0.52		
$\begin{aligned} & { }^{\mathrm{a}} I>3 \sigma(1) .{ }^{\mathrm{b}} \mathrm{GOF}=\left\{\Sigma w\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} /\left(N_{\mathrm{obs}}-N_{\mathrm{param}}\right)\right\}^{1 / 2} \cdot{ }^{\mathrm{c}} R=\Sigma\left\\|F_{\mathrm{o}}\left\|-\left\|F_{\mathrm{c}} \\| / \Sigma\right\| F_{\mathrm{o}}\right\| \cdot{ }^{\mathrm{d}} R_{w}=\left(\Sigma w\left(\left\|F_{\mathrm{o}}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} / \Sigma w F_{\mathrm{o}}^{2}\right\}^{1 / 2} ; w=\right. \\ & 4 F_{\mathrm{o}}^{2}\left[\sigma^{2}(I)+\left(0.02 F_{\mathrm{o}}^{2}\right)^{2}\right]^{-1} . \end{aligned}$				

Fig. 1. Molecular structure of [η^{6}-(1,8-dichloro-9,10-dihydroanthracene) FeCp) $]^{+}$, from $\mathbf{I b}$, with thermal ellipsoids at the 40% probability level. Hydrogen atoms omitted for clarity.
diffuse solvent molecule may be responsible for the somewhat poorer structural results obtained for Ia than for $\mathbf{I b}$ (as judged by agreement indices R, goodness of fit, and esd values for atomic coordinates and displacement parameters). A view of the cation in Ib with the atom labelling scheme is shown in Fig. 1. Crystallographic data are summarized in Table 3. Atomic coordinates and selected bond distances and angles of the two forms are listed in Tables 4 and 5.

Both crystal forms show an endo conformation for compound I , where the FeCp moiety is located inside the fold of the $\mathrm{AH}_{2} \mathrm{Cl}_{2}$ ligand. The most significant difference between the two crystal forms of \mathbf{I} is the dihedral angle formed by the benzene rings of the $\mathrm{AH}_{2} \mathrm{Cl}_{2}$ ligand: the uncomplexed ring in $\mathrm{AH}_{2} \mathrm{Cl}_{2}$ is bent somewhat more strongly towards the iron atom in Ib (134.5°) than in Ia $\left(145.6^{\circ}\right)$. The latter value is very close to that reported for $\mathrm{AH}_{2}\left(145^{\circ}\right)$ [15,16]. Previous studies of CpFe^{+}compounds of bent heterocyclic systems related to AH_{2}, containing two heteroatoms at the 9,10 -positions [17,18], have suggested that π coordination and substitution by electron-withdrawing groups on the aromatic rings may result in a flattening of the arene ligand. This proposal does not seem to apply for complex I where, in spite of π coordination and chlorine substituents, the $\mathrm{AH}_{2} \mathrm{Cl}_{2}$ ligand shows the same or even greater degree of folding compared with free AH_{2}. The difference in the dihedral angles of the complexed $\mathrm{AH}_{2} \mathrm{Cl}_{2}$ in Ia and Ib may originate from crystal packing forces, and the energy difference between the two conformations may be small. Conformational studies of $\mathrm{AH}_{2}[19]$ indicate that the variation of potential energy is small (ca. $4 \mathrm{~kJ} \mathrm{~mol}^{-1}$) over the range of dihedral angles between about 140° and 180°.

The aromatic rings of the $\mathrm{AH}_{3} \mathrm{Cl}_{2}$ ligands are planar (no deviations larger than $0.018 \AA$ in either structure) in both crystal forms. Longer average carbon-carbon distances are observed in Ib for the complexed ring of

Table 4
Atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

Atom	x	y	z	$U_{\text {eq }}{ }^{\text {a }}$
Ia				
Fe	0.5847(1)	0.67763 (7)	0.65189(4)	0.0571(3)
$\mathrm{Cl}(1)$	0.3993(3)	$0.5585(2)$	0.5788(1)	0.099(1)
$\mathrm{Cl}(2)$	$0.8436(3)$	0.4621 (2)	0.53422(9)	0.121(1)
Cl	0.4629(9)	0.5812(5)	0.6308(3)	0.062(3)
C2	0.3933(8)	$0.6372(6)$	0.6587(3)	0.079(3)
C3	0.446(1)	0.6587(5)	$0.7002(3)$	0.078(3)
C4	0.563(1)	0.6242(5)	$0.7146(3)$	0.077(3)
C5	0.989(1)	0.5202(6)	$0.6718(4)$	0.103(4)
C6	1.073(1)	0.5087(7)	$0.6375(5)$	0.120(5)
C7	1.031(1)	0.4921 (6)	0.5951(4)	0.105(4)
C8	0.8955(9)	0.4873(5)	$0.5869(3)$	0.079(3)
C9	0.6618(8)	0.4919 (5)	$0.6135(3)$	0.061(3)
Cl 10	0.758(1)	0.5274(6)	$0.7017(3)$	0.090(3)
C11	$0.5834(8)$	$0.5464(5)$	$0.6443(3)$	0.053(2)
C12	$0.6313(8)$	0.5663(5)	$0.6870(3)$	0.057(3)
C13	$0.8054(8)$	$0.4994(5)$	$0.6215(3)$	0.057(2)
C14	$0.8550(9)$	$0.5170(5)$	$0.6642(3)$	0.073(3)
C15	0.592(1)	0.8043 (6)	$0.6507(5)$	0.129(5)
C16	0.707(1)	0.7752(6)	$0.6636(3)$	$0.100(4)$
C17	0.759(1)	0.7259 (6)	$0.6307(4)$	$0.118(4)$
C18	0.670(1)	0.7276 (8)	0.5972(3)	0.165(5)
C19	0.563(1)	$0.7734(8)$	$0.6093(4)$	0.203(5)
P	0.6268(3)	0.8359(2)	0.80629(9)	0.0761 (8)
F1	0.7318 (9)	0.8178(7)	$0.7714(2)$	0.206(4)
F2	$0.5246(8)$	$0.8384(8)$	0.7703(3)	0.244(5)
F3	$0.5244(8)$	0.8541(5)	0.8423(3)	$0.185(3)$
F4	$0.7348(8)$	0.8271(6)	0.8432(2)	$0.162(3)$
F5	0.6513(9)	0.9308(5)	$0.8013(3)$	0.192(4)
F6	0.6049(9)	0.7422(5)	$0.8124(4)$	$0.211(5)$
C1S	1.108(1)	0.8019(7)	0.5547(3)	0.108(4)
$\mathrm{Cl}(1 \mathrm{~S})$	$1.0979(7)$	0.6967(3)	0.5558(2)	0.265(3)
$\mathrm{Cl}(2 \mathrm{~S})$	$0.9759(5)$	$0.8380(3)$	$0.5274(1)$	0.202(2)
$\mathrm{Cl}(3 \mathrm{~S})$	$1.2465(5)$	0.8316(4)	$0.5294(1)$	0.265(3)
Ib				
Fe	$0.58806(6)$	$0.17187(6)$	0.20529(4)	0.0408(1)
$\mathrm{Cl}(1)$	$0.2750(1)$	-0.0199(1)	0.2181(1)	0.0732(4)
$\mathrm{Cl}(2)$	$0.0082(2)$	0.1660(1)	$0.5345(1)$	0.0848(5)
C 1	0.3882(5)	0.1252(4)	$0.1629(3)$	0.049(1)
C2	$0.5424(5)$	$0.1100(4)$	0.0827(3)	0.053(1)
C3	$0.6404(5)$	0.2228 (5)	$0.0393(3)$	$0.055(1)$
C4	0.5851(5)	0.3488(4)	$0.0760(3)$	0.052(1)
C5	0.3327(5)	0.5197(4)	$0.3894(4)$	0.063(1)
C6	0.2673(6)	$0.4774(5)$	0.4994(4)	0.074(2)
C7	$0.1671(6)$	0.3691(5)	$0.5440(3)$	$0.070(2)$
C8	0.1341(5)	$0.3035(4)$	0.4764(3)	$0.056(1)$
C9	0.1703(5)	0.2697(4)	0.2897(3)	0.052(1)
C10	0.3712(5)	0.4927(4)	0.2022(3)	0.054(1)
C11	0.3304(4)	0.2502(4)	0.2008(3)	$0.044(1)$
C12	$0.4313(5)$	0.3632(4)	0.1565(3)	0.045 (1)
C13	$0.1997(5)$	0.3420 (4)	$0.3660(3)$	0.048(1)
C14	0.2999(5)	$0.4524(4)$	$0.3226(3)$	$0.049(1)$
C15	$0.8010(6)$	$0.0340(6)$	0.2373(4)	0.084(2)
C16	$0.8176(6)$	0.1691(6)	0.2353(4)	$0.085(2)$
C17	0.6861(6)	0.2152(5)	0.3122(3)	$0.085(2)$
C18	0.5802(6)	$0.1101(8)$	$0.3644(4)$	$0.103(2)$
C19	0.6557(6)	$-0.0060(5)$	0.3141(4)	0.091 (2)
P	$0.8519(1)$	$0.6815(1)$	0.11141 (9)	0.0550 (3)
F1	0.8739(5)	$0.8350(4)$	0.0377(3)	$0.135(2)$
F2	0.6833(4)	0.7428(4)	0.1843(3)	0.144 (2)

Table 4 (continued)

Atom	x	y	z	$U_{\text {eq }}{ }^{a}$
F3	$0.8288(5)$	$0.5300(4)$	$0.1861(4)$	$0.149(2)$
F4	$1.0249(4)$	$0.6205(4)$	$0.0436(3)$	$0.139(1)$
F5	$0.9578(4)$	$0.7145(4)$	$0.1798(3)$	$0.127(1)$
F6	$0.7497(4)$	$0.6477(4)$	$0.0447(3)$	$0.133(1)$

${ }^{2} U_{c c}$ defined as one third of the trace of the orthogonalized $U_{i j}$
$\mathrm{AH}_{2} \mathrm{Cl}_{2}(1.406(3) \AA)$ in comparison with the uncomplexed ring (1.381(3) \AA), and also in comparison with free $\mathrm{AH}_{2}(1.386(1) \AA)[15,16]$. This increase in bond length on π complexation to CpFe^{+}has been reported for other aromatic ligands [20,21] and is consistent with π backbonding from Fe into the antibonding orbitals on the arene ring. (We see no significant variation of corresponding $\mathrm{C}-\mathrm{C}$ lengths in Ia within the level of precision obtained in its structure determination.) In both forms, bond lengths to the 9 and 10 carbon atoms in $\mathrm{AH}_{2} \mathrm{Cl}_{2}$ are very similar and close to the values found in $\mathrm{AH}_{2}(1.512(6) \AA$) [15], while $\mathrm{C}-\mathrm{Cl}$ distances remain close to those in ACl_{2} (1.745(4) and $1.756(4) \AA$) [22]. The coordinated arene and Cp ring planes form dihedral angles of 4.1° and 2.8° in $\mathbf{I a}$ and $\mathbf{I b}$ respectively. The distances between Fe and the coordinated arene ring planes (1.533(1) \AA in Ia and $1.5361(5) \AA$ in Ib) are shorter than the distances between Fe and Cp ring planes ($1.660(1) \AA$ in Ia and $1.6624(5) \AA$ in Ib), despite longer $\mathrm{Fe}-\mathrm{C}_{\text {arene }}$ than $\mathrm{Fe}-\mathrm{C}_{\mathrm{C}_{p}}$ distances, owing to the larger size of the arene ring. The Fe center is not equidistant from the six carbons of the complexed arene ring. Instead, it is displaced so that four short and two long $\mathrm{Fe}-\mathrm{C}$ distances result: 2.071 (2) (average distance from Fe to $\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4$) and 2.103 (3) A (average, Fe to $\mathrm{C} 11, \mathrm{C} 12)$. All of these values are within the range of distances observed in other (η^{6}-arene) $[\mathrm{FeCp}]^{+}$compounds [20,21].

Crystals of II were not suitable for X-ray analysis. However, during one attempt to grow crystals of II, a small quantity of black crystals formed. A low-resolution X-ray analysis of these crystals showed what appears to be $\left(\mathrm{ACl}_{2}\right)[\mathrm{FeCp}]_{2}\left(\mathrm{PF}_{6}\right)_{2}$ containing the non-hydrogenated ACl_{2} ligand. (The black crystal, grown in acetone-diethyl ether, appears to be $\left[\eta^{6}: \eta^{6}\right.$ $\left.\left(\mathrm{ACl}_{2}\right)[\mathrm{FeCp}]_{2}\right]\left(\mathrm{PF}_{6}\right)_{2} \cdot$ solvent(s). The structure is orthorhombic, space group Fddd, $a=18.050(3), b=$ $26.180(5), c=29.922(3) \AA, V=14140(6) \AA^{3}, Z=16$. The crystal underwent severe anisotropic decay during data collection, amounting to about 60% intensity loss, apparently as a result of solvent loss. Refinement based upon 1157 observed data yields $R=0.186$. The model is not fully chemically reasonable, and the disordered solvent region has not been modeled. It is clear, however, that the compound is dimeric with trans Fe atoms and $\mathrm{C}-\mathrm{C}$ distances in the central ring (1.38(3)-1.49(3)

Table 5

Bond distances	Ia	Ib
$\mathrm{Fe}-\mathrm{Cl}$	$2.076(8)$	$2.074(5)$
$\mathrm{Fe}-\mathrm{C} 2$	2.075 (9)	$2.077(5)$
$\mathrm{Fe}-\mathrm{C} 3$	2.046 (9)	$2.068(4)$
$\mathrm{Fe}-\mathrm{C} 4$	2.071(8)	2.074 (3)
$\mathrm{Fe}-\mathrm{C} 11$	2.099(7)	$2.106(3)$
$\mathrm{Fe}-\mathrm{C} 12$	2.111(8)	$2.095(3)$
$\mathrm{Fe}-\mathrm{C} 15$	2.016(9)	$2.046(5)$
$\mathrm{Fe}-\mathrm{C} 16$	2.03(1)	$2.042(5)$
$\mathrm{Fe}-\mathrm{C} 17$	2.05(1)	$2.032(6)$
$\mathrm{Fe}-\mathrm{C} 18$	2.02(1)	$2.031(5)$
$\mathrm{Fe}-\mathrm{Cl} 9$	2.00(1)	$2.025(5)$
$\mathrm{C} 1-\mathrm{C} 2$	1.41(1)	$1.405(5)$
C1-C11	1.41(1)	$1.406(6)$
$\mathrm{Cl}-\mathrm{Cl}(1)$	$1.723(9)$	$1.734(4)$
C2-C3	1.40 (1)	$1.398(6)$
C3-C4	1.38(1)	$1.406(6)$
C4-C12	1.42(1)	$1.404(5)$
C5-C6	1.35(2)	$1.380(6)$
C5-C14	1.40(1)	$1.379(7)$
C6-C7	1.37(2)	$1.374(7)$
C7-C8	1.41(1)	$1.377(8)$
C8-C13	1.40 (1)	$1.383(5)$
C8-Cl(2)	1.71(1)	$1.739(5)$
C9-Cl1	1.50(1)	$1.505(5)$
C9-C13	1.50(1)	1.511(7)
$\mathrm{C10}-\mathrm{Cl} 2$	1.51(1)	$1.503(6)$
C10-C14	1.51(1)	$1.507(5)$
C11-C12	1.40(1)	1.416 (5)
C13-C14	1.40 (1)	$1.391(6)$
C15-C16	1.33(2)	$1.362(9)$
C15-C19	1.36(2)	1.366 (6)
C16-C17	1.37(1)	$1.353(6)$
C17-C18	1.35(2)	1.387(8)
C18-C19	$1.37(2)$	1.431(9)

Bond angles		
$\mathrm{Cl}(1)-\mathrm{C} 1-\mathrm{C} 2$	$118.3(7)$	$117.4(3)$
$\mathrm{Cl}(1)-\mathrm{Cl}-\mathrm{Cl1}$	$120.4(6)$	$120.7(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11$	$121.2(8)$	$121.9(4)$
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	$118.8(8)$	$118.9(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.1(8)$	$120.3(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Cl2}$	$120.1(8)$	$120.6(4)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 14$	$120(1)$	$120.3(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$122(1)$	$120.7(5)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$119(1)$	$118.5(4)$
$\mathrm{Cl}(2)-\mathrm{C} 8-\mathrm{C} 7$	$118.5(8)$	$117.8(3)$
$\mathrm{Cl}(2)-\mathrm{C} 8-\mathrm{C} 13$	$120.5(7)$	$120.0(4)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13$	$120.9(9)$	$122.2(4)$
$\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 13$	$112.5(7)$	$111.6(3)$
$\mathrm{C} 12-\mathrm{C} 10-\mathrm{C} 14$	$113.3(7)$	$111.8(3)$
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 9$	$121.4(7)$	$124.1(3)$
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{C} 12$	$118.5(7)$	$118.6(3)$
$\mathrm{C} 9-\mathrm{C} 11-\mathrm{C} 12$	$120.1(7)$	$117.3(4)$
$\mathrm{C} 4-\mathrm{C} 12-\mathrm{C} 10$	$121.5(7)$	$122.6(4)$
$\mathrm{C} 4-\mathrm{C} 12-\mathrm{C} 11$	$120.1(8)$	$119.7(4)$
$\mathrm{C} 10-\mathrm{C} 12-\mathrm{Cl1}$	$118.4(7)$	$117.6(3)$
$\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 9$	$121.3(7)$	$123.7(4)$
$\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 14$	$117.5(8)$	$118.3(4)$
$\mathrm{C} 9-\mathrm{C} 13-\mathrm{C} 14$	$121.2(7)$	$118.0(3)$
$\mathrm{C} 5-\mathrm{Cl4-C10}$	$121.5(9)$	$122.3(4)$
$\mathrm{C} 5-\mathrm{C} 14-\mathrm{Cl3}$	$120.9(9)$	$120.0(3)$
$\mathrm{C} 10-\mathrm{C} 14-\mathrm{C} 13$	$117.5(8)$	$117.7(4)$

Table 5 (continued)

$\mathrm{C} 16-\mathrm{C} 15-\mathrm{C} 19$	$110(1)$	$109.4(5)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$110(1)$	$108.5(4)$
$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 18$	$105(1)$	$109.5(5)$
$\mathrm{C} 17-\mathrm{C} 18-\mathrm{C} 19$	$111(1)$	$105.7(4)$
$\mathrm{C} 15-\mathrm{C} 19-\mathrm{C} 18$	$105(1)$	$107.0(5)$

\AA A) are more similar to those in ACl_{2} (1.385(6)-1.453(5)
\AA) than to those of \mathbf{I} a and $\mathbf{I b}$. The Fe dimer lies on a crystallographic twofold axis.) Attempts to prepare the mono- and diiron complexes of ACl_{2} by oxidation of the $\mathrm{AH}_{2} \mathrm{Cl}_{2}$ ligand in I and II respectively, using DDQ in the presence of a base $\left(\mathrm{Et}_{3} \mathrm{~N}\right.$ or $\left.\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ in $\mathrm{CH}_{3} \mathrm{CN}$ or benzene as solvent, were unsuccessful. Instead, decomposition of the starting materials occurred, and only $\mathrm{AH}_{2} \mathrm{Cl}_{2}$ and ACl_{2} could be isolated.

3. Conclusions

The synthesis of complexes I and II shows the feasibility of π complexation of chloroanthracene derivatives to CpFe^{+}moieties under mild reaction conditions in moderate yields. These compounds may serve as intermediates for the activation of ACl_{2} to nucleophilic attack. Although nucleophilic substitution reactions have been well studied for benzene compounds, there has been no attempt to reproduce them in condensed polycyclic arenes. We are now exploring the reactivities of these complexes with carbon nucleophiles.

4. Experimental part

ACl_{2} was prepared by reduction of 1,8 -dichloroanthraquinone by Zn in NH_{3} (aq) following literature procedures [23,24]. Other chemicals and solvents were reagent grade and were used as-received. NMR spectra were recorded by using Bruker AC 200, AC 250 and AM 400 spectrometers. An HP5971 instrument was used for GC-MS.
4.I. $\left[\eta^{6}-\left(\mathrm{AH}_{2} \mathrm{Cl}_{2}\right) \mathrm{FeCpl}\left(\mathrm{PF}_{6}\right)(\mathrm{I})\right.$

A mixture of $\mathrm{ACl}_{2}(3.3 \mathrm{~g}, 14 \mathrm{mmol})$, ferrocene (2.5 $\mathrm{g}, 14 \mathrm{mmol}), \mathrm{AlCl}_{3}(3.6 \mathrm{~g}, 27 \mathrm{mmol})$ and Al powder ($0.4 \mathrm{~g}, 14 \mathrm{mmol}$) in methylcyclohexane (50 ml) was refluxed for 20 h under N_{2}. The resulting solution was allowed to cool to room temperature under N_{2} and with continuous stirring the mixture was hydrolyzed with 25 ml of ice water. The organic layer was separated and extracted with $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layers were combined, washed with hexane several times to remove unreacted ferrocene, and then filtered into a solution of
$2.2 \mathrm{~g}(14 \mathrm{mmol})$ of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ dissolved in the minimum amount of $\mathrm{H}_{2} \mathrm{O}$. The yellow hexafluorophosphate salt I precipitated ($0.4 \mathrm{~g}, 6 \%$) and was crystallized from either CHCl_{3}-ether or CHCl_{3}-hexane as orange-yellow needles.

$$
\text { 4.2. } \left.I \eta^{6}: \eta^{6}-\left(\mathrm{AH}_{2} \mathrm{Cl}_{2}\right)(\mathrm{FeCp})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}(I I)
$$

A mixture of ACl_{2} ($2.5 \mathrm{~g}, 10 \mathrm{mmol}$), ferrocene (26.5 $\mathrm{g}, 142 \mathrm{mmol}), \mathrm{AlCl}_{3}(37.7 \mathrm{~g}, 283 \mathrm{mmol})$ and Al powder $(3.8 \mathrm{~g}, 142 \mathrm{mmol})$ in 200 ml of cyclohexane was heated at reflux under N_{2} for 40 h . The resulting material was worked up as described above for I using 3.3 g (20 mmol) of $\mathrm{NH}_{4} \mathrm{PF}_{6}$. The crude product (2.2 g), containing a mixture of \mathbf{I} and $\mathbf{I I}$, was treated first with CHCl_{3}, and the mixture filtered. The filtrate was concentrated and flooded with hexane, precipitating pure I in 13% yield. The remaining crude solid was then treated with acetone, and the solution was filtered, concentrated and flooded with ether, giving II in 26% yield. Compound II was then crystallized from acetone-ether as yellow needles.

$$
\text { 4.3. } \mathrm{AH}_{2} \mathrm{Cl}_{2}
$$

A methanolic solution of complex I or II was allowed to evaporate in a sublimator in order to form a thin film of the compound on the glass. After evacuation to ca. 10^{-2} Torr, heat was applied with an oil bath to $140-160^{\circ} \mathrm{C}$ for 0.5 h . A yellowish-white solid (yield $50-60 \%$) was collected from the cold finger, and identified as $\mathrm{AH}_{2} \mathrm{Cl}_{2}$ with a small amount of ACl_{2} (approx. 1% by ${ }^{1} \mathrm{H}$ NMR). The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{AH}_{2} \mathrm{Cl}_{2}$ (Table 2) shows only one quaternary carbon instead of the expected three; this may be caused by coincidental overlap with other arene signals or low signal to noise ratio. EI-MS $m / z(\%) 252,250,248\left(68, \mathrm{M}^{+}\right) ; 215$, 213 ($92, \mathrm{M}^{+}-\mathrm{Cl}$); 178 ($100, \mathrm{M}^{+}-2 \mathrm{Cl}$); 106 (26); 88 (41).

4.4. Crystal structure determination of $\left[\eta^{6}\right.$. $\left(\mathrm{AH}_{2} \mathrm{Cl}_{2}\right) \mathrm{FeCpl}\left(\mathrm{PF}_{6}\right)(\mathrm{I})$

Intensity data for Ia and Ib were collected on an Enraf-Nonius CAD4 diffractometer equipped with Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$, and a graphite monochromator, by $\omega-2 \theta$ scans of variable rate. The crystals used for data collection were sealed in capillaries. Data reduction included corrections for background, Lorentz, polarization, and absorption effects. Absorption corrections were based on ψ scans, and no corrections were made for decay. The structures were solved by direct methods and refined by full-matrix least squares, treating non-hydrogen atoms anisotropically, using the Enraf-Nonius MolEN programs [25]. Hydro-
gen atoms were placed in calculated positions. Tables of displacement parameters and observed and calculated structure factors are available from the authors; all other structural data have been deposited at the Cambridge Crystallographic Data Centre.

Acknowledgment

We thank the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this work.

References

[1] A.W. Maverick, D.P. Martone, J.R. Bradbury and J.E. Nelson, Polyhedron, 8 (1989) 1549.
[2] J.R. Bradbury, J.L. Hampton, D.P. Martone and A.W. Maverick, Inorg. Chem., 28 (1989) 2392.
[3] A.W. Maverick and F.E. Klavetter, Inorg. Chem., 23 (1984) 4129.
[4] R.G. Sutherland, A.S. Abd-El-Aziz, A. Piorrko and C.C. Lee, Synth. Commun., 17 (1987) 393.
[5] C.C. Lee, A.S. Abd-El-Aziz, R.L. Chowdhury, A. Piórko and R.G. Sutherland, Synth. React. Inorg. Met.-Org. Chem., 16 (1986) 541.
[6] M.F. Semmelhack and H.T. Hall, J. Am. Chem. Soc., 96 (1974) 7091.
[7] B.R. Willeford and E.O. Fischer, J. Organomet. Chem., 4 (1965) 109.
[8] A.N. Nesmeyanov, N.A. Vol'kenau and I.N. Bolesova, Tetrahedron Lett., 25 (1963) 1725.
[9] R.G. Sutherland, S.C. Chen, W.J. Pannekoek and C.C. Lee, J. Organomet. Chem., 101 (1975) 221.
[10] R.G. Sutherland, S.C. Chen, W.J. Pannekoek and C.C. Lee, J. Organomet. Chem., 117 (1976) 61.
[11] C.C. Lee, K.J. Demchuk, W.J. Pannekoek and R.G. Sutherland, J. Organomet. Chem., 162 (1978) 253.
[12] C.C. Lee, K.J. Demchuk and R.G. Sutherland, Can. J. Chem., 57 (1979) 933.
[13] V. Guerchais and D. Astruc, J. Organomet. Chem., 312 (1986) 97.
[14] R.G. Sutherland, W.J. Pannekoek and C.C. Lee, Can. J. Chem., 56 (1978) 1782.
[15] F.H. Herbstein, M. Kapon and G.M. Reisner, Acta Crystallogr. Sect. B:, 42 (1986) 181.
[16] J.P. Reboul, Y. Oddon, C. Caranoni, J.C. Soyfer, J. Barbe and G. Pèpe, Acta Crystallogr. Sect. C., 43 (1987) 537.
[17] K.A. Abboud, S.H. Simonsen, A. Piórko and R.G. Sutherland, Acta Crystallogr. Sect. C: 47 (1991) 1198.
[18] K.A. Abboud, V.M. Lynch, S.H. Simonsen, A. Piórko and R.G. Sutherland, Acta Crystallogr. Sect. C:, 46 (1990) 1018.
[19] K.B. Lipkowitz, in P.W. Rabideau (ed.), The Conformational Analysis of Cyclohexenes, Cyclohexadienes, and Related Hydroaromatic Compounds, VCH, New York, 1989, pp. 244-255.
[20] A. Houlton, R.M.G. Roberts, J. Silver and A.S. Wells, Acta Crystallogr. Sect. C: 48 (1992) 1018.
[21] V.M. Lynch, S.N. Thomas, S.H. Simonsen, A. Piórko, R.G. Sutherland, Acta Crystallogr. Sect. C:, 42 (1986) 1144.
[22] M.R. Benites, F.R. Fronczek and A.W. Maverick, Acta Crystallogr. Sect. C:, 52 (1996) 647.
[23] H.O. House, J.A. Hrabie and D. VanDerveer, J. Org. Chem., 51 (1986) 921.
[24] J.P. Collman, J.E. Hutchinson, M.A. Lopez, A. Tabard, R. Guilard, W.K. Seok, J.A. Ibers and M. L'Her, J. Am. Chem. Soc., 114 (1992) 9869.
[25] C.K. Fair, MolEN. An Interactive System for Crystal Structure Analysis, Enraf-Nonius, Delft, Netherlands, 1990.

[^0]: * Corresponding author.

[^1]: ${ }^{\text {a }}$ In acetone- d_{6}, unless otherwise noted; δ / ppm vs. TMS; assignments were made using DEPT experiment. ${ }^{\mathrm{b}}$ In CDCl_{3}. Six arene signals were expected; see Experimental part for discussion. ${ }^{\text {c }}$ In DMSO- d_{6}, from Ref. [9].

